Two-Commodity Multiroute Maximum Flow Problem

نویسندگان

  • Donglei Du
  • R. Chandrasekaran
چکیده

We consider a two-commodity multiroute maximum flow problem in an undirected network— a generalization of the standard two-commodity maximum flow problem. An efficient combinatorial algorithm, which always guarantees a quarter-integer solution when the capacities are integers, is devised to solve a special case based on a novel extension of the augmentingpath technique. Partial results are reported and the difficulties in applying the augmenting-path technique to the general case are explained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The multiroute maximum flow problem revisited

We are given a directed network G = (V,A, u) with vertex set V , arc set A, a source vertex s ∈ V , a destination vertex t ∈ V , a finite capacity vector u = {uij}ij∈A, and a positive integer m ∈ Z+. The multiroute maximum flow problem (m-MFP) generalizes the ordinary maximum flow problem by seeking a maximum flow from s to t subject to not only the regular flow conservation constraints at the ...

متن کامل

A new strategy for the undirected two-commodity maximum flow problem

Abstract. We address the two-commodity maximum flow problem on undirected networks. As a result of a change of variables, we introduce a new formulation that solves the problem through classical maximum flow techniques with only one-commodity. Therefore, a general strategy, based on this change of variables, is defined to deal with other undirected multi-commodity problems. Finally, we extend t...

متن کامل

A Fast Algorithm for Maximum Integral Two-Commodity Flow in Planar Graphs

We consider in this note the maximum integral two-commodity flow problem in augmented planar graphs, that is with both sourceesink edges added. We provide an O(n&) simple algorithm for finding a maximum integral two-commodity flow in augmented planar graphs.

متن کامل

On multiroute maximum flows in networks

Let G = (N, A) be a network with a designated source node s, a designated sink node t, and a finite integral capacity uij < U on each arc (ij) E A. An elementary K-flow is a flow of K units from s to t such that the flow on each arc is 0 or 1. A K-route flow is a flow from s to t that may be expressed as a non-negative linear sum of elementary Kflows. In this paper, we show how to determine a m...

متن کامل

0 61 7 - 19 90

We consider the maximum integral tWo-Commodity flow problem in augmented planar graphs (i.e., with both source-sink edges added) and provide an o(IVI 2 1ogIVI) algorithm for that problem. Let G = (V, E) be a graph and w : E-t Z+ a weight function. Let T C V be an even subset of the vertices of G. A T-cut is an edge-cutset of the graph which divides T into two odd sets. Lomonosov gave a good cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005